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1 Introduction and summary

Recently, Hořava has proposed a new approach to the theory of quantum gravity [1]. The

key idea of the proposal is to equip space-time with a new structure: a foliation by space-

like surfaces. This foliation defines the splitting of the coordinates into “space” and “time”

and breaks the general covariance of general relativity (GR). Then one can improve the

UV behavior of the graviton propagator and ultimately make the theory power-counting

renormalizable by adding to the GR action terms with higher spatial derivatives. At the

same time the action in the ADM formalism contains only first order time derivatives,

which allows to circumvent the problems with the ghosts appearing in covariant higher

order gravity theories [2]. The higher derivative terms naively become irrelevant in the

infrared and it was argued in [1] that the theory reduces to GR at large distances.

However, the consistency of the above proposal is far from being clear. The main

concern comes from the fact that the introduction of a preferred foliation explicitly breaks

the gauge group of GR down to the group of space-time diffeomorphisms preserving this

foliation. As already pointed out in [1] this breaking is expected to introduce extra degrees

of freedom compared to GR. The new degrees of freedom can persist down to the infrared

and lead to various pathologies (instabilities, strong coupling) that may invalidate the

theory. An illustration of this phenomenon is provided by theories of massive gravity

where special care is needed to make the additional degrees of freedom well-behaved [3–5].

In the recent works in the topic there have been several controversial claims about

the properties of the extra degrees of freedom. In [6] the new mode was identified among
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the perturbations around a static spatially homogeneous background in the presence of

matter. The mode was argued to be strongly coupled to matter in the limit when the

theory is expected to approach GR, making it hard to believe that a GR limit exists. It

is worth noting that the mode found in [6] is not propagating: its equation of motion

does not contain time derivatives [7]. Thus it remains unclear from this analysis whether

this mode corresponds to a real degree of freedom or can be integrated out as unphysical.

The observation that the extra mode is non-propagating was generalized in [8] to the

case of cosmological backgrounds. The interpretation of this result given in [8] is that

actually the Hořava gravity is free from additional degrees of freedom. It was also claimed

that the strong coupling is alleviated by the expansion of the Universe. Finally, the non-

linear Hamiltonian analysis performed in [9] shows that the phase space of Hořava gravity

is 5-dimensional. This result is puzzling: a normal degree of freedom corresponds to a

2-dimensional phase space; so the result of [9] suggests that the number of degrees of

freedom in Hořava gravity is two and a half. Two of these degrees of freedom are naturally

identified with the two helicities of graviton. But the physical meaning of the extra “half-

mode” is obscure.

The aim of the present paper is to clarify this issue. We show that Hořava gravity

does possess an additional light scalar mode. For a general background the equation of

motion of this mode contains time derivatives implying that the mode is propagating.

The peculiarity of Hořava gravity is that the equation for the extra mode is first order in

time derivatives. Still, the solution corresponds to waves with a background dependent

dispersion relation and is fixed once a single function of spatial coordinates is determined

as the initial condition in the Cauchy problem. This explains why this mode corresponds

to a single direction in the phase space.

Next we address the consistency of the Hořava proposal by studying the infrared prop-

erties of the extra mode. We find that its dynamics exhibits a number of bad features.

First, the mode becomes singular for static or spatially homogeneous backgrounds. Namely,

the mode frequency diverges in that limit. This explains why this mode has been over-

looked in the previous analyses of perturbations in Hořava gravity [6–8]. Second, for certain

(background-dependent) values of spatial momentum the mode becomes unstable. Again,

the rate of the instability diverges if one takes the static / spatially homogeneous limit for

the background metric. Third, we show that at energies above a certain scale the extra

mode is strongly coupled to itself, and not only to matter. We find that the strong cou-

pling scale is background dependent and goes to zero for flat / cosmological backgrounds.

Hence, the model suffers from a much more severe strong coupling problem than pointed

out in [6], where the dependence of the strong coupling scale on the background curvature

was ignored. Because of the strong coupling the Hořava model can be trusted only in a

narrow window of very small energies, way below the Planck scale; this point is illustrated

schematically in figure 1. This implies that the Hořava model cannot be considered as

consistent theory of quantum gravity.

To unveil the properties of the extra mode we make use of the Stückelberg formal-

ism. For the case at hand the Stückelberg trick is synonymous to the covariantization of

the model. As a result we obtain a scalar-tensor theory with the time derivative of the
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Figure 1. The energy scales appearing in the Hořava model: the Planck mass MP and the strong

coupling scale Λsc. The theory can be trusted only in the narrow window of energies 0 < E < Λsc

(dashed region). The scale Λsc is much smaller than MP , it depends on the background curvature

and goes to zero for flat / cosmological backgrounds, see eq. (5.8) below.

scalar field developing non-zero vacuum expectation value. The invariance under foliation

preserving diffeomorphisms implies that the theory has an internal symmetry consisting in

reparameterizations of the scalar. We clarify the subtleties that arise in the application of

the Stückelberg procedure to Hořava gravity due to the intrinsically non-relativistic nature

of the proposal. The covariantization of the higher space derivatives of the model leads

to higher covariant derivative operators in the equations of motion. Naively, this would

imply the appearance of too many degrees of freedom. However, in the theory at hand

the higher derivative operators are of a special type that allows for a well-posed Cauchy

problem with reduced number of initial data in the preferred foliation. In this way the

number of degrees of freedom is decreased and matches with the number of modes in the

non-covariant formulation. As a byproduct, we point out a large class of covariant higher

derivative operators that allow for the reduction of the number of degrees of freedom in a

preferred Cauchy slicing.

There exist two versions of the original Hořava proposal [1]. The difference between

them lies in an additional restriction which can be imposed on the lapse function. Namely,

one can require the lapse to be “projectable”, i.e. be constant along the foliation surfaces.

In the present paper we are mainly interested in the non-projectable case; all the previous

discussion refers to this case. The projectable version of the theory is briefly discussed

at the end of the paper. We argue that in this case the Hořava gravity is equivalent to a

specific limit of the ghost condensate model [10]. This implies that now the theory possesses

a full-fledged extra scalar degree of freedom with second order equation of motion. The

classical dynamics of linear perturbations of the scalar is regular for all backgrounds. In this

sense the projectable version of the theory is better behaved than the non-projectable one.

However, beyond the linear or classical level the additional scalar still exhibits pathologies.

As shown in [11], at the classical level the dynamics of the projectable version of Hořava

gravity is equivalent to GR supplemented by a pressureless fluid. As we discuss, the fluid

component is precisely described by the extra scalar, the fluid velocity being proportional

to the scalar gradient. A well-known property of pressureless fluid is to develop caustics

where the fluid velocity becomes ill-defined. For the scalar at hand it means that the

theory inevitably breaks down after finite amount of time evolution. At the quantum level,

the extra mode exhibits unacceptably low scale of strong coupling. We comment on the

possible ways to address these problems.

The paper is organized as follows. In section 2 we describe the model and formulate

the Cauchy problem for it. In section 3 we derive the linearized equations for perturbations

about an arbitrary background. We find an explicit expression for the extra mode and show

– 3 –
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that it obeys first order equation in time. In section 4 we turn to the Stückelberg analysis

of the model which allows us to study the properties of the extra mode in a transparent

way. We discuss the subtleties in the application of the Stückelberg formalism to the case

at hand. In section 5 we take the limit when the GR part decouples from the Stückelberg

sector and concentrate on the latter. We find that the linear perturbations of the field

exhibit fast exponential instability and unacceptably low scale of strong coupling. Finally,

in section 6 we consider the projectable version of Hořava gravity and argue that it is

equivalent to a specific limit of ghost condensate model. Section 7 contains concluding

remarks and discussion of future directions. Technical details are deferred to appendix A.

2 Cauchy problem for Hořava gravity

We consider the class of non-relativistic generalizations of GR proposed in [1]. One starts

with the ADM decomposition of the space-time metric,

ds2 = (N2 − NiN
i)dt2 − 2Nidxidt − γijdxidxj .

Then the action for a theory of this class can be written in the generic form

S =
M2

P

2

∫

d4x
√

γ N
(

KijK
ij − λK2 + ξR + ζRijR

ij + . . .
)

, (2.1)

where MP is the Planck mass; Kij is the extrinsic curvature tensor for the surfaces of

constant time, K is its trace; Rij , R, γ are the Ricci tensor, Ricci scalar and the determinant

of the spatial metric γij , and N is the lapse function. The extrinsic curvature is related to

the time derivative of the metric in the usual way,

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi) . (2.2)

Throughout the paper, if not stated otherwise, 3-dimensional indices i, j, . . . are raised and

lowered using γij, and the covariant derivatives carrying these indices are understood in

the 3-dimensional sense. The ellipsis in (2.1) represents higher order terms constructed out

of the metric γij using only spatial derivatives and invariant under 3-dimensional diffeo-

morphisms. As discussed in [1], the introduction of terms of sufficiently high order (with

six spatial derivatives) yields a theory which is näıvely power-counting renormalizable.

The purpose of the present paper is to study the properties of the theory (2.1) in the

infrared. The precise structure of the higher order terms is not essential for this analysis.

To illustrate the general effect of these terms it suffices to consider explicitly one of them

which we choose to be the square of the Ricci tensor.

The action (2.1) reduces to GR for the values of the parameters1 λ = 1, ζ = 0. Away

from these values (2.1) explicitly breaks general covariance down to the subgroup consisting

of spatial diffeomorphisms and reparameterizations of time,

x 7→ x̃(t,x) , t 7→ t̃(t) . (2.3)

1The value of the parameter ξ is not important: it can always be absorbed into the rescaling of the time

coordinate and the shift Ni.
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These transformations preserve the foliation of the space-time by the surfaces t = const.

Note that if one assumes that the action (2.1) defines a consistent quantum theory, one

expects all the parameters in this action to acquire radiative corrections and flow by the

renormalization group. In particular, the parameter λ is expected to be generally different

from 1. It was argued [1] that in the infrared limit the higher order terms become negligible

and so one may expect to recover GR if the parameter λ flows to 1 in that limit. We will see

below that this expectation is incorrect: the explicit breaking of general covariance leads

to the appearance of an extra degree of freedom in the infrared which becomes strongly

coupled2 when λ approaches 1.

Varying the action with respect to N , Ni, γij yields the following equations,

− KijK
ij + λK2 + ξR + ζRijR

ij = 0 , (2.4)

∇iK
ij − λ∇jK = 0 , (2.5)

− ∂

∂t
(Kij − λγijK) − (1 − 2λ)NKKij − 2NKikKj

k + NKklK
klγij − ξNRij

−ξγij∆N + ξ∇i∇jN − 2ζNRikRj
k − ζ∇k∇l(NRkl)γij − ζ∆(NRij)

+ζ
[

∇k∇i(NRkj) + ∇k∇j(NRki)
]

= 0 . (2.6)

Here ∆ ≡ γij∇i∇j and we have fixed the gauge Ni = 0. This system has to be supple-

mented by the evolution equation (2.2) for the metric which in the chosen gauge takes

the form

γ̇ij = 2NKij . (2.7)

Let us analyze the Cauchy problem for the system (2.4)–(2.7). The set of initial data at

t = 0 consists of the values for γij, Kij and N at this time. The initial data have to

satisfy the constraints (2.4) and (2.5). Then eqs. (2.6), (2.7) describe the time evolution

of the extrinsic curvature and the metric. However, the system (2.4)–(2.7) is incomplete:

it does not allow to determine the time evolution of the lapse N . In GR this ambiguity is

a gauge artifact removed by appropriate gauge fixing, e.g. N = 1. In our case the gauge

freedom is absent, and N is a genuine dynamical field. To obtain the missing equation

one notices that, due to the lack of gauge invariance, the Hamiltonian constraint (2.4) is

not automatically preserved by the time evolution. Imposing that the constraint holds at

any time one gets a secondary constraint which produces an equation for N . Taking the

time derivative of (2.4) and simplifying the result with the use of the rest of the equations

we obtain

∇i

{

N2
[

ξ(λ − 1)∇iK + ζ
(

Kkj∇iRkj − Rkj∇iKkj + K∇jR
ij − Rij∇jK

−Kkj∇kRij + Rkj∇kK
i
j − Ki

j∇kR
kj + Rij∇kKkj

)]}

= 0 . (2.8)

As expected, the l.h.s. of this equation vanishes identically in the case of GR as a conse-

quence of gauge invariance. For λ and ζ away from their GR values this equation allows

2More precisely, the additional mode is weakly coupled only in a narrow window at low energies. This

window depends both on λ and the parameters of the background geometry; it shrinks to zero both when

λ → 1 or when the background curvature vanishes, see section 5.
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to determine the lapse at any moment of time provided the configuration of γij , Kij is

given; in this way it imposes additional constraint on the initial data. It is important to

notice that the constraint vanishes whenever the extrinsic curvature or gradients of the

curvature tensors are zero. In particular, this happens for spatially homogeneous or static

configurations. Note also that eq. (2.8) has the form of the conservation of a (space-like)

current. This fact acquires a natural interpretation in the covariant picture where (2.8)

becomes the equation of motion of the Stückelberg field, and the current corresponds to

the shift symmetry of this field, cf. eq. (4.16) below.

The system (2.4)–(2.8) constitutes the complete set of equations of motion for Hořava

gravity. Let us count the number of independent Cauchy data for this system. Originally

the set of initial data for γij,K
ij , N contains 6 + 6 + 1 = 13 functions of spatial variables

x. The constraints (2.4), (2.5), (2.8) eliminate 1 + 3 + 1 = 5 of them. Additionally, 3

functions are removed by the residual (time-independent) gauge transformations of spatial

coordinates. Thus we are left with 13 − 5 − 3 = 5 arbitrary functions as initial data. 4

of these functions are identified as initial data for the two helicities of the graviton. The

remaining freedom in the choice of one more function implies the presence of an extra mode

which is absent in GR. Note that because the Cauchy data for this mode are limited to

a single function, the corresponding evolution equation must be first order in time. This

agrees with the observation made in [9] that the phase space of the Hořava gravity has odd

dimensionality. Our task below is to investigate the properties of the extra mode.

3 The elusive mode

In this section we reveal the extra mode explicitly. For the sake of the argument we restrict

to the case when the higher order terms in the action are absent, ζ = 0, and breaking of

general covariance arises only from λ 6= 1. This restriction allows to capture the essential

physics of the extra mode, without overloading the paper with lengthy formulae. As it will

become transparent below, the main conclusions are unaffected by the values of ζ and λ, so

long as the general covariance is broken by some of these terms. For ζ = 0 the secondary

constraint (2.8) reduces to

∇i

(

N2∇iK
)

= 0. (3.1)

Consider small perturbations of the fields about a background γ̄ij , K̄
ij , N̄ . We assume that

the background satisfies the equations of motion of the Hořava gravity, but is arbitrary

otherwise. Thus we write

γij = γ̄ij + hij ,

Kij = K̄ij + κij ,

N = N̄ + n .

– 6 –
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The next step is to plug these expressions into eqs. (2.4) – (2.8) and expand them to linear

order in the perturbations hij , κij , n. We obtain

− 2K̄ijκ
ij − 2K̄i

kK̄
jkhij + 2λK̄κ + 2λK̄K̄ijhij − ξ∆h + ξ∇i∇jhij − ξR̄ijhij = 0 ,

(3.2)

∇iκ
ij − λ∇jκ + K̄kl∇kh

j
l −

1 + 2λ

2
K̄kl∇jhkl +

1

2
K̄kj∇kh + λ∇kK̄hj

k − λ∇jK̄klhkl = 0 ,

(3.3)

− ∂

∂t

(

κij − λγ̄ijκ + λK̄hij − λγ̄ijK̄klhkl

)

− n
(

(1 − 2λ)K̄K̄ij − λK̄2γ̄ij + 2K̄ikK̄j
k

)

−(1 − 2λ)N̄K̄κij − 2N̄K̄i
l κ

lj − 2N̄K̄j
l κ

li − N̄
(

(1 − 2λ)K̄ij − 2λγ̄ijK̄
)

κ

−λN̄K̄2hij − 2N̄K̄ikK̄jlhkl − N̄
(

(1 − 2λ)K̄ij − 2λγ̄ijK̄
)

K̄klhkl

+ξ

[

∇i∇jn − γ̄ij∆n − (R̄ij − γ̄ijR̄)n +
N̄

2
∆hij − N̄

2
∇k∇ihj

k − N̄

2
∇k∇jhi

k

+
N̄

2
∇i∇jh − N̄ γ̄ij∆h + N̄ γ̄ij∇k∇lhkl −

1

2
∇kN̄∇ihjk − 1

2
∇kN̄∇jhik

+
1

2
∇kN̄∇khij + γ̄ij∇kN̄∇lh

lk − 1

2
γ̄ij∇kN̄∇kh

+N̄R̄j
kh

ik + N̄R̄i
kh

jk − N̄R̄klγ̄ijhkl − N̄R̄hij (3.4)

+∆N̄ hij + γ̄ij∇k∇lN̄ hkl −∇k∇jN̄ hi
k −∇k∇iN̄ hj

k

]

= 0 ,

ḣij = 2N̄κij + 2N̄K̄k
j hik + 2N̄K̄k

i hjk + 2K̄ijn , (3.5)

2∇iK̄∇in + ∆K̄n + 2∇iN̄∇iκ + N̄∆κ + N̄K̄ij∆hij

+2N̄∇kK̄ij∇khij − N̄∇jK̄∇ih
ij

+
N̄

2
∇kK̄∇kh + 2∇iN̄K̄kl∇ihkl + N̄∆K̄ijhij − N̄∇i∇jK̄hij (3.6)

−2∇iN̄∇jK̄hij + 2∇iN̄∇iK̄
klhkl = 0 .

Here the indices are raised and lowered using the background metric γ̄ij , and the covariant

derivatives are understood with respect to this metric.

One makes an important observation. As discussed above, eq. (3.6) is supposed to

determine the evolution of the lapse. However, the terms linear in n disappear from

this equation whenever the gradients of the background extrinsic curvature vanish. In

particular, this happens for static or spatially homogeneous backgrounds. Then, instead

of determining the lapse, eq. (3.6) imposes a constraint on an otherwise propagating field,

making the extra mode non-dynamical.3

It is instructive to work out the case of Minkowski background in a certain detail. In

3 The fact that the extra mode does not propagate at linear level in homogeneous or static backgrounds

also holds for the general Hořava action (2.1). The reason is that the combination in the square brackets

in the secondary constraint (2.8) vanishes on these backgrounds. This is precisely the combination which

multiplies the perturbation of the lapse in the linearized equation.

– 7 –
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this case eq. (3.4) takes the form

− ∂

∂t
(κij − λδijκ) + ξ

[

∂i∂jn − δij∆n (3.7)

+
1

2
∆hij −

1

2
∂k∂ihjk −

1

2
∂k∂jhik +

1

2
∂i∂jh − δij∆h + δij∂k∂lhkl

]

= 0 .

The linearized Hamiltonian constraint (3.2) yields ∆h = ∂i∂jhij ; therefore the trace

of (3.7) reads

(1 − 3λ)κ̇ = −2ξ∆n.

If n were determined by (3.6), this would be a first order equation for κ. However, in

Minkoswki (3.6) reduces to

∆κ = 0 ,

which restricts the perturbation of both the extrinsic curvature and the lapse to vanish.

The rest of the argument proceeds in the same way as in GR and one concludes that all

scalar modes are non-propagating.4 The same effect occurs in any spatially homogeneous

or static background. This explains why the extra mode was overlooked in the previous

analyses [6–8] that focused on this class of backgrounds.

According to the above discussion the extra mode reveals itself only in backgrounds

which are both time-dependent and spatially inhomogeneous. Finding an exact solution of

Hořava gravity with these properties is a difficult task. Fortunately, for our purposes it is

not needed: it is enough to realize that such backgrounds exist. As a concrete example,

one can keep in mind a large gravitational wave.5

In the generic case, the system of linearized equations is intractable. What saves

the day is the fact that the extra mode appears in any background such that the terms

proportional to n in (3.6) do not cancel. It is enough to consider perturbations at space-

time scales much shorter than the characteristic distance of the variation of the background.

This allows to treat the background fields as almost constant at the scales of interest and

ensures the validity of Fourier analysis at these scales. Technically this amounts to keeping

in the equations only terms with least number of derivatives of the background. Let

us make this point more quantitative. We assume that the background metric changes

at characteristic space-time scale L. Then we have R̄ij ∼ 1/L2, K̄ij ∼ 1/L. We are

interested in perturbations at distances much shorter than L. This means that we consider

perturbations with frequencies and momenta ω, p ≫ 1/L. Consequently, in eqs. (3.2)–

(3.6) we can neglect terms with derivatives of the background in comparison to the terms

with derivatives of perturbations. This does not imply throwing away all the terms with

background gradients: some of these terms may be the leading ones. For instance, the first

term in eq. (3.6) is the leading contribution containing the lapse n in this equation. In this

4This statement is true only at linear order in perturbations. The non-linear corrections will bring back

the propagating mode as it is clear from the study of perturbations in general backgrounds and from the

Stückelberg picture, see below.
5Moreover, once the perturbations to any metric are considered, the presence of inhomogeneities is

universal.
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way we obtain the simplified system,

− 2K̄ijκ
ij + 2λK̄κ − ξ∆h + ξ∂i∂jhij = 0 , (3.8)

∂iκ
ij − λ∂jκ + K̄kl∂kh

j
l −

1 + 2λ

2
K̄kl∂jhkl +

1

2
K̄kj∂kh = 0 , (3.9)

−κ̇ij + λδij κ̇ − λK̄ḣij + λδijK̄klḣkl + ξ

[

∂i∂jn − δij∆n

+
N̄

2
∆hij − N̄

2
∂k∂ihj

k − N̄

2
∂k∂jhi

k +
N̄

2
∂i∂jh − N̄δij∆h + N̄δij∂k∂lhkl

]

= 0 , (3.10)

ḣij = 2N̄κij + 2K̄ijn , (3.11)

2∂in∇iK̄ + N̄∆κ + N̄K̄ij∆hij = 0 , (3.12)

where without loss of generality we have set6 γ̄ij ≈ δij . Let us first consider eq. (3.11). It

follows from this equation that either κij or K̄ijn is at least of order ωhij . Let us further

assume7 ω ≫ p: we will see shortly that the dispersion relation of the extra mode obeys

this inequality. Then we see that in eq. (3.12) the last term is always negligible. A similar

reasoning shows that one can neglect all the terms containing hij in (3.10). This yields a

closed system of equations for κij and n:

−κ̇ij + λδij κ̇ + ξ
[

∂i∂jn − δij∆n
]

= 0 , (3.13)

2∂in∇iK̄ + N̄∆κ = 0 . (3.14)

We point out that this system is explicitly first order in time derivatives. As already

mentioned, at short scales we can treat the combinations of the background fields appearing

in the above equations as constant. One performs the Fourier decomposition

hij , κ
ij , n ∝ e−iωt+ipx

and finds that the solution of the system (3.13) – (3.14) has frequency

ω =
ξN̄p4

(1 − 3λ)pj∂jK̄
. (3.15)

The extrinsic curvature for this solution is determined in terms of the lapse,

κij =
ipk∂kK̄

N̄p4

(

−(1 − 3λ)pipj + (1 − λ)δijp2
)

n . (3.16)

Note that ω ∼ p3L2 which is indeed much bigger than p. Besides, the extrinsic curvature

behaves as

κij ∼ n

pL2
. (3.17)

6The background metric can be always brought to this form in the vicinity of any given point by the

time-independent 3-dimensional diffeomorphism.
7The analysis in the complementary regime ω ∼ p reveals only the two transverse traceless modes of the

graviton.
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From this estimate one concludes that the r.h.s. of (3.11) is dominated by the second term.

This yields for the perturbations of the metric

hij =
2i(1 − 3λ)pk∂kK̄

ξp4
K̄ijn . (3.18)

Finally, we have to check the constraints (3.8), (3.9). From (3.18) we see that

hij ∼
n

(pL)3
.

This estimate together with (3.17) implies that the terms containing hij in (3.9) should be

neglected compared to the first two terms; on the other hand, all the term in (3.8) are of the

same order. Then it is straightforward to verify using the explicit expressions (3.16), (3.18)

that the constraints are satisfied.

Let us briefly summarize our results. Eqs. (3.16) and (3.18) provide the explicit ex-

pression for the extra mode of Hořava gravity in the short wavelength limit. This mode is

parametrized by a single scalar function n(p) and has the dispersion relation (3.15). To-

gether with the two polarizations of the graviton found in the complementary regime ω ∼ p

this matches with our counting of degrees of freedom in section 2. The frequency (3.15) of

the mode diverges when the gradients of the background extrinsic curvature vanish. Thus

the mode becomes singular for spatially homogeneous or static backgrounds.

The expression (3.15) also diverges for the modes with spatial momenta perpendicular

to the gradient ∂iK̄. Naively, one could try to find the behaviour of these modes by

applying the Fourier analysis to the system (3.8)–(3.12) including next to leading term

from eq. (3.6), i.e. the term ∆K̄n. However, this would give an incorrect result. The

leading-order expression (3.15) for the frequency of the mode depends on the background

fields and hence on the space-time point where one performs the Fourier decomposition.

Therefore at the subleading level the first term in eq. (3.6) produces contributions of

the form

n t ∂iω∂iK̄ ∼ nωtL−3 ,

which at the time scales of interest t ∼ ω−1 are of the same order as the term

∆K̄n ∼ nL−3 .

Thus, the consistent treatment of the subleading effects requires going beyond Fourier

analysis. Instead, one has to implement the WKB expansion in order to properly account

for the inhomogeneity of the background. We will perform this study in the decoupling

limit in section 5, where we will find that the subleading corrections generically lead to fast

exponential instability of the extra mode.

To close this section, let us emphasize that the qualitative properties of the extra mode

mentioned above are generic for any Hořava-type Lagrangian, even though in our consid-

eration we mainly focused on the term (1−λ)K2. Technically, the important point is that

the perturbation of the lapse n enters in the linearization of the secondary constraint (2.8)

with a coefficient that does not vanish on inhomogeneous and time-dependent backgrounds.
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Then this equation relates n with the perturbation of the trace of the extrinsic curvature κ

and leads to a first order evolution equation. In other words there will be always analogs of

eqs. (3.13), (3.14) whenever the Lagrangian contains terms violating the four-dimensional

general covariance. This is what makes the scalar mode propagate at linear level around

inhomogeneous and time-dependent backgrounds for any Hořava-type Lagrangian.

4 Stückelberg formalism

To get more insight into the dynamics of Hořava gravity we use the Stückelberg formalism.

This will allow us to clearly separate the extra propagating mode and perform a detailed

analysis of its properties.

The first step is to restore the full general covariance8 at the expense of introducing

the corresponding Stückelberg field. Namely, we encode the foliation structure of Hořava

gravity in a scalar field φ(x) with non-vanishing time-like gradient. The surfaces of the

foliation are then defined by the equations

φ(x) = const . (4.1)

The original action (2.1) is written in the gauge where the field φ coincides with time,

φ = t. Below we will refer to this choice of coordinates as “unitary gauge”.

Before obtaining the explicit expression for the action in an arbitrary gauge let us

anticipate some of its properties. First, due to the presence of the new field φ, we ex-

pect the action to be some kind of tensor-scalar theory. Second, the invariance of the

original formulation (2.1) under time reparameterizations (second equation in (2.3)) trans-

lates into the symmetry of the covariant action with respect to reparameterizations of the

Stückelberg field,

φ 7→ φ̃ = f(φ) , (4.2)

where f is an arbitrary monotonous function. The appearance of a time-dependent vev

for φ breaks the product of this symmetry and general covariance down to the diagonal

subgroup. The latter translates in the unitary gauge into the invariance under foliation

preserving diffeomorphisms (2.3).

To proceed one notices that the quantities appearing in (2.1) are the standard geometri-

cal objects (induced metric, extrinsic and intrinsic curvature) characterizing the embedding

of the hypersurfaces defined by (4.1) in space-time. The central object in the construction

of these quantities is the unit normal vector9 uµ. Explicitly,

uµ ≡ ∂µφ√
X

,

8While this paper was in preparation ref. [12] appeared which also deals with the topic of the covariant

form of the Hořava gravity.
9Throughout the paper the Greek indices µ, ν, . . . are raised and lowered using the 4-dimensional metric

gµν while the Latin indices i, j, . . . are raised and lowerd using the spatial metric γij . The same correspon-

dence applies to the covariant derivatives carrying these indices.
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where

X ≡ gµν ∂µφ∂νφ .

Note that uµ is automatically invariant under the transformations (4.2). Other geometrical

quantities associated to the foliation are constructed out of uµ and its derivatives. We have

the following expressions for the spatial projector:

Pµν ≡ gµν − uµuν ,

the extrinsic curvature:

Kµν ≡ Pρµ∇ρuν =
1√
X

P ρ
µP σ

ν ∇ρ∇σφ ,

and the intrinsic Riemann tensor:

Rµ
νρσ = Pµ

α P β
ν P γ

ρ P δ
σ

(4)Rα
βγδ + Kµ

ρKνσ −Kµ
σKνρ , (4.3)

where in the last equation (4)Rα
βγδ is the 4-dimensional Riemann tensor. Now it is straight-

forward to obtain the covariant form of the action (2.1) by identifying the quantities ap-

pearing in the ADM decomposition with the appropriate combinations of uµ, Pµν , Kµν ,

etc. in the unitary gauge. For instance, in this gauge one has

u0 =
1√
X

= N , ui = 0 , (4.4)

P 00 = P 0i = 0 , P ij = −γij ,

Kij = Kij , etc.

In this way from (2.1) we obtain the following covariant action,

S =
M2

P

2

∫

d4x
√−g

{

− (4)R + (1 − λ)K2 + ζPµνP ρσRµρRνσ + . . .
}

, (4.5)

where K ≡ Kµ
µ and

Rµρ = Pα
µ P β

ρ
(4)Rαβ − uαuβ (4)Rαµβρ + Kα

αKµρ −Kα
µKαρ .

In deriving (4.5) we set for simplicity ξ = 1; as we have already mentioned the value of

this parameter is not physically relevant and we will stick to this choice from now on. The

above action describes gravity interacting with a derivatively coupled scalar10 φ, which

enters into (4.5) through the combinations Pµν , Kµν , Rµν .

From the action (4.5) the advantage of the Stückelberg formalism is clear: it allows to

transfer the extra mode of Hořava gravity from the metric sector to the φ-sector. Indeed,

due to the general covariance of the action one can always choose the gauge where the metric

sector contains only the two transverse traceless modes of the graviton. At the same time

the extra mode is unambiguously identified with the fluctuation of the foliation structure.

10Clearly, the terms in the action containing the scalar disappear when λ = 1 and all the higher order

terms vanish, i.e. in the pure GR case.
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At this point we encounter a puzzle. To be consistent with the counting of degrees of

freedom in the unitary gauge the equation of motion for the Stückelberg field must be first

order in time derivatives. On the other hand, it is easy to see that the action (4.5) contains

more than two derivatives of the field φ. For example, consider the term proportional to

(1 − λ). Written explicitly in terms of φ it reads,

Sλ =
M2

P (1 − λ)

2

∫

d4x
√−g

1

X

(

�φ − ∇µφ∇νφ

X
∇µ∇νφ

)2

, (4.6)

and contains four derivatives.11 Thus, for general choice of space-time coordinates, the

equation of motion for φ is fourth order in time derivatives. The corresponding Cauchy

problem requires four arbitrary initial data; this apparently contradicts the counting of

degrees of freedom performed in section 2, where we found only one additional function

compared to GR. The resolution of this puzzle lies in the fact that the higher-derivative

equation following from (4.6) is of a very special type. There exist a particular choice of

coordinates for the formulation of the Cauchy problem where less initial data are required.

This Cauchy slicing is precisely the preferred foliation of the model. In these coordinates

the number of time derivatives in the equation for φ is reduced to one, which matches with

the counting of the degrees of freedom in the unitary gauge.

To illustrate the point about the reduction of degrees of freedom in a preferred frame

let us make a digression and consider the following equation for a non-relativistic scalar ϕ,

ϕ̈ + (−1)q∆qϕ = 0 , (4.7)

where q ≥ 2 is an integer number. This equations describes one degree of freedom and

the corresponding Cauchy problem involves two initial data. The general solution of the

equation (4.7) is a collection of waves with dispersion relation ω2 = p2q.

However, when one attempts to write down the same theory in a manifestly Lorentz

invariant way one seemingly encounters the problem that the theory is higher derivative

both in space and time directions. Indeed, in a generic Lorentz frame eq. (4.7) acquires

up to 2q time derivatives of ϕ. An observer in this frame would conclude that the number

of degrees of freedom is q > 1, as to solve the equations of motion she would need up

to 2q initial conditions. Does this contradict the counting of degrees of freedom in the

original frame? The answer is no, because the two formulations of the Cauchy problem

are physically inequivalent. Indeed, recall that specification of the solutions which are

considered as physical involve fixing the boundary conditions at spatial infinity. In the

simple case of eq. (4.7) the natural choice is to impose vanishing of the field,

ϕ → 0 , at |x| → ∞ . (4.8)

When one thinks of the Cauchy problem in the boosted frame, one also implicitly assumes

the condition (4.8) but now imposed at the spatial infinity in this frame. Then the standard

11The terms with gradients of the intrinsic curvature contribute with even higher derivatives of φ.
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procedure is to perform the Fourier expansion of the initial data and follow the evolution

of each eigenmode separately. In this approach one indeed finds that in the boosted frame

there are 2q eigenmodes. However, a straightforward analysis shows that only two of these

modes have real frequencies. This means that the other modes grow exponentially either

at positive or at negative times. In particular, if an observer living in the boosted frame

is free to chose arbitrary initial conditions she will conclude that the system is unstable.

However, the growing modes, while being legitimate solutions in the boosted frame, do

not satisfy the condition (4.8) in the original coordinate system. Thus in the latter system

they are discarded as unphysical.

The situation here is similar to the case of fields obeying second-order equation

of motion

ϕ̈ − v2∆ϕ = 0 (4.9)

with superluminal velocity, v > 1. The Cauchy problems for eq. (4.9) are physically

inequivalent when formulated in the original and highly boosted frames [13–15]. The latter

corresponds to the case when the Cauchy slices intersect the future causal cone

t = |x|/v (4.10)

of eq. (4.9). On the other hand, all the Cauchy problems formulated on slices lying outside

the cone (4.10) are equivalent. The difference between eqs. (4.7) and (4.9) is that the

former does not have a well-defined causal cone: the signal can propagate from the origin

to any point at t > 0. Thus even arbitrarily small deviations from the original slicing

qualitatively change the properties of the system.

For what follows it is convenient to slightly generalize the above discussion. Consider

the Lorentz covariant equation

Aµν∂µ∂νϕ − (Bµν∂µ∂ν)
q ϕ = 0 , (4.11)

where the symmetric matrices Aµν , Bµν transform as tensors under Lorentz boosts. These

matrices may depend on various fields present in the theory, in particular, they can depend

on the field ϕ itself. Naively, eq. (4.7) contains 2q time derivatives and thus describes q

degrees of freedom. However this reasoning is not correct in general. The properties of the

differential equation (4.11) are characterized by the eigenvalues and eigenvectors of Aµν

and Bµν . The general study of the possible cases is beyond the scope of the present paper.

Here we just point out the special case when Bµν has one hypersurface-orthogonal timelike

eigenvector with zero eigenvalue and 3 spacelike eigenvectors12 with non-zero eigenvalues.

Then, in the frame defined by these eigenvectors the number of time derivatives in the

operator Bµν∂µ∂ν is reduced. In general, in curved backgrounds or when the matrix

Bµν is space-time dependent, the resulting operator still contains one time derivative,

cf. eq. (4.12) below. Still, the main conclusion is that the number of degrees of freedom

described by an equation can be reduced compared to the naive expectation by proper

choice of Cauchy slicing.

12Note that because of symmetry of the matrix Bµν its eigenvectors are orthogonal.
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Let us return to the Hořava gravity. Consider the higher derivative terms appearing

in the equation of motion for the Stückelberg field φ. To be concrete let us take the case

of the action (4.6). Then the term with four derivatives in the equation reads13

(Pµν∇µ∇ν)
2φ .

This is precisely of the form (4.11) with Bµν = Pµν , q = 2. Thus we expect a reduction

of the number of degrees of freedom in a certain frame. In the rest of this section we

demonstrate that this is indeed the case for a large class of Hořava-type Lagrangians.

Namely, we prove the following statement. Consider perturbations of the field φ around

the background φ̄,

φ = φ̄ + χ . (4.13)

Then in the frame where the background is in unitary gauge,

φ̄ = t , (4.14)

the linearized equation for χ is first order in time derivative.

For simplicity, we concentrate on the case when the Lagrangian for the Stückelberg

field depends only on first derivatives of the normal vector uµ. Moreover, we assume that

these derivatives enter into the Lagrangian through the extrinsic curvature Kµν ,

L = L(uµ,Kµν) . (4.15)

This case covers all terms in the general Hořava-type Lagrangian except those involving

spatial derivatives of the 3-dimensional curvature tensor Rijkl. Indeed, the Gauss-Codazzi

equation (4.3) implies that the terms polynomial in Rijkl depend on φ only through the

projector Pµν and the extrinsic curvature.

One observes that the equation of motion for the field φ has the form of the cur-

rent conservation,

∇µJµ = 0 , (4.16)

where

Jµ =
∂L

∂∇µφ
−∇ν

∂L
∂∇µ∇νφ

is the current related to the reparameterization symmetry (4.2). Let us demonstrate that

the current is orthogonal to the gradient of φ,

uµJµ = 0 . (4.17)

By explicit computation we find,

Jµ =
1√
X

{

Pµ
σ

∂L
∂uσ

− uσKµ
ρ

∂L
∂Kσρ

+ Pµ
σ uρK

∂L
∂Kσρ

− Pµ
σ P λ

ρ ∇λ
∂L

∂Kσρ

}

. (4.18)

13 Explicitly in terms of 3+1 decomposition we have the operator identity

P
µν

∇µ∇ν = −∆ + Ku
λ
∇λ (4.12)

valid for the action on scalar functions.
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This expression explicitly satisfies (4.17). Now we perform the separation of the field into

the background and perturbations. The key observation is that in the frame defined by

eq. (4.14) the current contains exactly one time derivative of the linear perturbation χ.

Indeed, the perturbations of uµ and the extrinsic curvature do not contain time derivatives

of χ. This follows from the explicit expressions

δuµ =
1√
X̄

P̄µν∂νχ ,

δKµν =
1√
X̄

[

− 2ā(ν P̄ ρ
µ)∂ρχ − ūµK̄ρ

ν∂ρχ + P̄ λ
µ∇λ(P̄ ρ

ν ∂ρχ)
]

,

where bar refers to the background values and

aν ≡ uλ∇λuν

is the proper acceleration of the congruency defined by uµ. Then, by inspection of the

expression (4.18) one finds that the only contribution with time derivative comes from the

variation of the factor 1/
√

X ,

δ
1√
X

= − 1

X̄
ūσ∂σχ = − 1√

X̄
χ̇ + . . . .

To complete the argument we have to show that taking divergence of the current in the

equation of motion (4.16) does not bring more time derivatives. Due to the property (4.17)

one has

Jµ = Pµ
ν Jν ,

and thus (4.16) can be written as

Pµ
ν ∇µJν − aνJ

ν = 0 .

When expanded to linear order in perturbations, the first term contains only spatial deriva-

tives of the perturbation of the current. Thus this term remains first derivative in time.

Explicitly, the corresponding contribution reads,

− ūµJ̄ν

√
X̄

∇µ∇νχ .

Another contribution with first time derivatives comes from the perturbation of aν ,

δaν =
ūλP̄ νρ

√
X̄

∇λ∇ρχ + . . . .

Note that the two contributions are equal and sum up. This completes the proof.

Two comments are in order. First, let us take a closer look at the equation of motion

for the Stückelberg field. For the sake of the argument let us consider the action (4.6). Up

to an irrelevant constant factor the current (4.18) reduces in this case to

Jµ = − 1√
X

Pµν∇νK .
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In the unitary gauge it takes the form14

J0 = 0 , J i = N2∇iK .

One observes that the equation of motion (4.16) coincides with the secondary con-

straint (3.1). It is straightforward to check that the equation for φ is identical to the

secondary constraint also for the general Hořava type Lagrangian. This confirms the con-

sistency of the Stückelberg treatment.

Second, the expression (4.15) is not the most general Lagrangian compatible with the

reparameterization symmetry (4.2). Even if one restricts attention to Lagrangians with

only first derivatives of uµ, one can still add to (4.15) dependence on aν . In the unitary

gauge the terms with aν translate into terms with spatial derivatives of the lapse,

a0 = 0 , ai = ∇iN/N ;

such terms were not considered in [1]. As the linear expansion of aν contains one time

derivative of the perturbation χ, the argument given above does not go through in this case,

and the equation for the Stückelberg field may contain more than one time derivative.15

In particular, adding the term (aν)2 to the Lagrangian makes the equation second order

in time.

5 Instability and strong coupling

We now perform a detailed study of the properties of the Stückelberg field perturbations

χ. To make the analysis clear we restrict the study to the case when the Stückelberg action

contains only the term (4.6). Moreover, we consider the decoupling limit, (1 − λ) ≪ 1.

In this limit the backreaction of the Stückelberg sector on the space-time geometry is

negligible and one considers φ as propagating in a fixed background metric. At the same

time this is precisely the limit where the theory is expected to approach GR. In this regime

the non-linearities of the Stückelberg field become important at energy scales much smaller

than those of the other modes in the theory. This will allow to easily establish the strong

coupling scale in this sector.

We start by obtaining the quadratic action for the perturbations. According to the

discussion of the previous section we work in the foliation defined by the background value

of the field. Thus we fix the gauge φ̄ = t, N̄i = 0. Expanding the quantities in the

action (4.6) to quadratic order one obtains

Sχ =
M2

P (1 − λ)

2

∫

d4x
√

γ

[

− 2N̄2∇iK̄χ̇∇iχ + N̄3(∆χ)2

− 2N̄∇i∇jN̄
2 ∇iχ∇jχ +

(

2

3
∆N̄3 − N̄2 ˙̄K

)

∇iχ∇iχ

]

.

(5.1)

14Recall that the covariant derivatives with Latin indices refer to the 3-dimensional metric γij .
15 This is readily understood in the unitary gauge, where the secondary constraint will now contain the

time derivative of the lapse.
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where we have used

K =K̄ − 2∇iN̄∇iχ − N̄∆χ + N̄ χ̇∆χ + 2N̄∇iχ̇∇iχ

+ 2∇iN̄ χ̇∇iχ + ˙̄N∇iχ∇iχ +
N̄2

2
K̄∇iχ∇iχ − N̄2K̄ij∇iχ∇jχ .

This action explicitly reveals the properties of the extra mode discussed previously. Indeed,

it contains only one time derivative of χ, so that the resulting equation is first order in time.

The term with time derivative vanishes whenever the gradient of the extrinsic curvature

is zero, and the field χ becomes non-propagating. One also observes that due to the

background equation of motion (3.1) this action is invariant under the shifts

χ 7→ χ + ξ(t) ,

where ξ(t) is an arbitrary function of time. This is recognized as the linearized form of

the reparameterization (4.2). This symmetry prevents χ from having the ordinary χ̇2

kinetic term.

Let us analyze the equation of motion following from (5.1). As in section 3 we are

interested in the short wavelength limit,

pL ≫ 1 ,

where p is the momentum of the χ-mode, and L is the characteristic length of the variation

of the background. In this regime the dominant terms in the equation are those containing

the largest number of derivatives of χ. After using the equations for the background (3.1),

the leading contributions to the equations of motion are

2∇iK̄∂iχ̇ + N̄∆2χ + 6∇iN̄∇i∆χ = 0 , (5.2)

where for future reference we retain the main subleading correction represented by the last

term on the l.h.s. To find the solution of eq. (5.2) we use the same strategy as in section 3.

Namely, we restrict to the vicinity of a given point xo. To the leading approximation the

background fields in this vicinity can be considered as constant. One also assumes that the

spatial metric γ̄ij at this point is flat and the Cristoffel symbols vanish; this can be always

achieved by performing a 3-dimensional diffeomorphism. Now it easy to obtain the leading

behavior of the solution. One performs the Fourier expansion

χ ∝ e−iωt+ipx (5.3)

and substitutes it into (5.2). Discarding the last — subleading – term one obtains the

dispersion relation

ω = − N̄p4

2(pi∂iK̄)
. (5.4)

This coincides with the expression16 (3.15) of section 3 in the decoupling limit λ ≈ 1.

16Recall that in the present section we work within the convention ξ = 1.
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We now discuss the first corrections in 1/(pL) to the solution (5.3), (5.4). The reason

for considering these corrections is that they qualitatively change the behaviour of the mode

making it either exponentially decaying or growing. As already pointed out in section 3,

in order to find the subleading corrections one has to go beyond the Fourier analysis and

implement the WKB expansion in the vicinity of the point xo. The details of this procedure

are contained in the appendix. Here we quote the main result. The eigenmode frequency

acquires an imaginary part which is estimated as

δω ∼ ip2L . (5.5)

The sign of this imaginary part depends on the direction of the mode momentum p relative

to the gradients of the background. Those modes for which the imaginary part is positive

are exponentially growing. Note that the rate of this growth is much faster than the

characteristic background frequency 1/L. Thus we conclude that the Hořava model suffers

from fast instability at short scales.

Another problem with the theory appears when one takes into account self-interaction

of the field χ. Let us first consider the case of flat background. Then, computing the leading

non-linear terms from the expansion of the covariant Lagrangian (4.6) in the perturbation

χ we obtain,

S =
M2

P (1 − λ)

2

∫

d4x
{

(∆χ)2 + 2χ̇
(

(∆χ)2 + 2∂iχ∂i∆χ
)}

. (5.6)

As expected, the quadratic part of the action does not contain time derivatives. Note,

however, that the time derivatives do appear in the interaction. The form of this La-

grangian is restricted by the fact that χ nonlinearly realizes the field-reparameterization

symmetry (4.2)

χ 7→ χ + ξ(t) + ξ̇(t)χ + . . . .

The theory (5.6) clearly has a dimensionful coupling constant (
√

|1 − λ|Mp)
−1 which sig-

nals the presence of strong quantum coupling at high enough energies. The naive estimate

of the strong coupling scale is provided by the inverse of this coupling [6],

Λnaive =
√

|1 − λ| MP . (5.7)

Note that this scale goes to zero in the putative GR limit λ → 1. In particular, in this

limit it is parametrically smaller than the “deep UV” scale MP at which the higher-order

terms of the Hořava model could become important.

We now argue that the scale of strong coupling for the action (5.6) is even lower

than (5.7), viz. zero. The physical reason is that due to the absence of time derivatives

in the quadratic part of the action, rapid fluctuations of the field χ are not suppressed.

Hence, the interaction terms with time derivatives blow up (see related discussion in [16]).

To make a quantitative statement let us regulate the action (5.6) by expanding on a

nearly flat but nontrivial background. This introduces the first order kinetic term for χ as

in (5.1). For momenta much larger than the scale defined by the background the leading
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order terms in the action are essentially the same as in flat space plus the background

dependent kinetic term. Schematically,

S = Λ2
naive

∫

d4x
{

L−2 viχ̇∂iχ + (∆χ)2 + χ̇(∆χ)2
}

,

where vi is the unit vector along the direction of the extrinsic curvature gradient, and L is

the typical length scale of the background. The free part of the action is invariant under

the scaling17

x 7→ b−1 x

t 7→ b−3 t

χ 7→ b χ .

Under this scaling the interaction term has dimension +4; thus it becomes relevant at short

scales. To estimate the cutoff one performs the rescaling

t 7→ t̂ = tL2 ,

χ 7→ χ̂ = L−1Λnaiveχ ,

which brings the quadratic part of the action to the canonically normalized form.

This yields,

S =

∫

d4x

{

vi ˙̂χ∂iχ̂ + (∆χ̂)2 +
L3

Λnaive

˙̂χ(∆χ̂)2
}

,

where dot is now understood as the derivative with respect to the rescaled time t̂. From

this expression one reads out the cutoff scales for the spatial momentum and the rescaled

frequency: they are set by the appropriate powers of the unique coupling constant appearing

in the interaction term. One obtains

Λp = L−3/4Λ
1/4
naive ,

Λω̂ = L−9/4Λ
3/4
naive .

Using the relation ω̂ = ω/L2 between the rescaled and the physical frequencies we obtain

the physical frequency cutoff

Λω = L−1/4Λ
3/4
naive . (5.8)

Note that due to the non-relativistic structure of the theory the cutoff scales in spatial

momentum and frequency are not equal. Instead, they satisfy the relation Λω = Λ3
pL

2,

which is compatible with the dispersion relation of the extra mode. It is clear that both

Λp and Λω go to zero in the limit of flat background. Hence, the theory becomes strongly

coupled at all scales.

17Remarkably, we find here the same relative scaling of space and time as that proposed by Hořava for

the deep UV to make the theory naively power-counting renormalizable. We have nothing more to say on

that coincidence.
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6 Hořava gravity with projectable lapse as a ghost condensate

In this section we consider another version of Hořava theory also proposed in [1]. In this

formulation the lapse function appearing in the action (2.1) is assumed to be projectable,

which means that it does not depend on spatial coordinates, N = N(t). As we are about

to see, the dynamics of the model in this case is very different from the case studied in the

main body of the paper. We discuss it here only briefly, leaving a more thorough study for

the future.

In the projectable case the variation of the action with respect to N , instead of pro-

ducing the local Hamiltonian constraint (2.4), gives the integral of eq. (2.4) over the whole

space. Such an integral constraint does not affect local physics. Thus, as far as local dy-

namics is concerned, the full set of equations of motion is provided18 by eqs. (2.5)–(2.7).

Using the reparameterization of time one can set N = 1 in these equations. Let us count

the number of required Cauchy data. Out of 12 functions present in γij , Kij , 3 are con-

strained by eq. (2.5). 3 more functions are removed by residual spatial diffeomorphisms.

Thus we are left with 12 − 3 − 3 = 6 initial conditions. This is larger by 2 than in the GR

case, suggesting the presence of an extra mode with second order evolution equation.

The simplest way to study this new mode is by using the Stückelberg formalism. First,

notice that the constraint N = 1 can be enforced by adding to the action (2.1) the term

Sρ =

∫

d4x
√

γN
ρ

2

(

1

N2
− 1

)

,

where ρ is a Lagrange multiplier. From the relation (4.4), the generally covariant form of

the previous action reads

Sρ =

∫

d4x
√−g

ρ

2

(

∇µφ∇µφ − 1
)

. (6.1)

Apart from this term the action for φ contains higher-order contributions coming from

the rest of the Hořava Lagrangian. The latter contributions either contain more than two

derivatives or describe non-minimal couplings to the metric, cf. eq. (4.5).

The theory (6.1), together with higher order contributions, can be viewed as a special

(non-minimally coupled) case of the ghost condensate model [10]. The latter model is

characterized by a Lagrangian

Lgc = P (∇µφ∇µφ) + (terms with higher derivatives) , (6.2)

where the function P (X) has a minimum at X = 1. This forces the field φ to develop a

non-zero time-like gradient. The Lagrangian (6.1) is the “sigma model limit” of (6.2) when

the function P gets replaced by the constraint. Note, however, an important difference in

the interpretation of the higher derivative terms in the ghost condensate model and Hořava

gravity. In the standard approach to the ghost condensate they are considered as higher

order terms in the effective field theory expansion, while according to Hořava they should

be taken at face value and determine the UV properties of the system.

18Clearly, eq. (2.8) expressing the conservation of the Hamiltonian constraint is also absent.
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Let us get more insight into the dynamics of the field φ described by (6.1). For the

sake of the argument we omit the higher order terms. This would correspond to the IR

limit of the putative UV complete theory. However, we will see shortly that the φ-sector

exhibits a number of pathologies which make the UV completion problematic.

The action yields the following equations of motion,

∇µφ∇µφ = 1 , (6.3)

∇µ(ρ∇µφ) = 0 .

These equations are equivalent to the equations of motion of an ideal pressureless fluid

(dust) with energy-momentum tensor

Tµν = ρ∇µφ∇νφ .

We see that ρ and ∇µφ are identified respectively as the energy density and velocity of the

effective fluid. This result is in agreement with the findings of [11] where it was proposed to

interpret the effective dust-like component arising in the projectable version of the Hořava

gravity as dark matter. However, we point out that a well-known property of pressureless

fluids is that they develop caustics, i.e. there are space-time regions where the fluid velocity

is ill-defined (see [17] for discussion of this topic in the context of field theory models of dark

matter). The formation of caustics is easy to understand in the decoupling limit when the

backreaction of the fluid on the geometry is negligible. Then the fluid particles move along

geodesics without feeling each other. Given a general inhomogeneous initial distribution of

particle velocities, their trajectories will cross forming a caustic. While this process does

not pose a problem for real dust where it leads to virialization, the formation of caustics

means an inconsistency in the case of a scalar theory, as the field is not differentiable at

the caustics. Thus, we conclude that for generic initial configurations the theory described

by the action (6.1) breaks down after finite time evolution. Note that the formation of

caustics is a general problem of the ghost condensate action (6.2) [18]. In that context, it

was suggested [18] that the problem might be resolved by the effect of higher derivative

term which make the fluid particles deviate from the geodesic motion. This hope is absent

in the special case of the action (6.1): irrespective of the higher-order terms the fluid

particles move exactly along geodesics as long as the constraint (6.3) is present.

The consistency of the Lagrangian (6.1) is also challenged at the quantum level. To get

the flavor of the problem let us again omit the higher order terms and proceed to quantize

the model in the canonical formalism. For simplicity we also neglect the backreaction of the

field φ on the metric and assume the latter to be flat. The canonically conjugate momenta

for the variables φ, ρ are

πφ = ρφ̇ ,

πρ = 0 . (6.4)

The constraint (6.3) in canonical variables takes the form

π2
φ

ρ2
− (∂iφ)2 = 1 . (6.5)
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Equations (6.4) and (6.3) form a pair of second class constraints and enable to eliminate

the variables ρ, πρ. In this way one obtains the Hamiltonian,

H = πφ

√

1 + (∂iφ)2 . (6.6)

Note that in our case the elimination of constraints does not modify the Poisson brackets

of the remaining variables,

{πφ(x), φ(y)} = δ(x − y) , etc.

The quantization of the theory proceeds now in the standard way by imposing the canonical

commutation relations on πφ and φ.

The Hamiltonian (6.6) certainly looks unusual. To get insight into its properties, let

us expand it around the background φ = t, πφ = ρ0. Thus we write

φ = t + χ/
√

ρ0 , πφ = ρ0 + πχ
√

ρ0

and obtain,19

H =
1

2
(∂iχ)2 +

1

2
√

ρ0
πχ(∂iχ)2 + . . . . (6.7)

As an example we included here one of the interaction terms. Now, (6.7) describes a theory

with dimensionful coupling 1/
√

ρ0. This implies that the theory gets strongly coupled at

the cutoff scale Λ . ρ
1/4
0 . For the dark matter interpretation of the φ-sector, taking the

present-day value for the average density of dark matter, one obtains the cutoff

Λ . 10−3eV ,

which is unacceptably low for a candidate theory of quantum gravity. In fact, the cutoff

in the theory (6.7) may be even lower, viz. zero. This can be argued from the fact that

the quadratic part of the Hamiltonian (6.7) does not contain the momentum πχ. Thus the

quantum fluctuations of πχ are not suppressed and the interaction terms containing πχ

blow up. The careful analysis of this issue is beyond the scope of this paper.20

To summarize, we found that in the decoupling limit, when the backreaction of the

extra mode on the metric can be neglected, the projectable version of the Hořava gravity

suffers from caustic and low cutoff problems. This suggests the inconsistency of the model

in its present form.

7 Conclusions and discussion

In this paper we have studied Hořava’s proposal for quantum gravity [1] from the low-

energy perspective. We have mainly concentrated on the “non-projectable” version of the

model. We have uncovered the additional scalar degree of freedom arising from the explicit

19Note that the canonical transformation from the variables φ, πφ to χ, πχ is time-dependent. Taking

this properly into account eliminates the term linear in πχ in the Hamiltonian.
20Another issue which we do not address in this paper is the effect of the higher order terms on the

power-counting.
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breaking of the general covariance and analyzed its properties in detail. A peculiarity of the

new mode is that it satisfies an equation of motion that is of first order in time derivatives;

this means that it adds just one direction to the phase space, or ‘half’ a degree of freedom.

At linear level the mode is manifest only on spatially inhomogeneous and time-dependent

backgrounds. We have demonstrated the existence of the extra mode in two physically

equivalent ways. First we performed the analysis in the original ADM-like formulation

of Hořava and identified the mode among the perturbations of the metric. Second, we

made use of the Stückelberg formalism which amounted to restoring the general covariance

of the model. This required introducing a scalar field describing the foliation structure

of the Hořava model. It is worth stressing that this procedure did not add any new

physical degrees of freedom compared to the original formulation because the scalar field

was introduced simultaneously with a new local symmetry. The latter gauge symmetry is

the part of general covariance which is explicitly broken in the Hořava’s original formulation.

The Stückelberg approach allowed us to transfer the extra mode into the fluctuations of

the foliation structure and to perform a detailed study of its properties.

We found two serious problems associated with this mode. First, the mode develops

very fast exponential instabilities at short distances. Second, it becomes strongly coupled at

extremely low cutoff scale. Due to the non-relativistic nature of the theory the cutoff scales

in spatial momentum and frequency are different. They both depend on the curvature of

the background metric and go to zero when this curvature vanishes. These features allow

to conclude that Hořava’s proposal is inconsistent in the present form.

We have also discussed the “projectable” version of the Hořava model. We have argued

that this version can be understood as a certain limit of ghost condensation. In this case,

the theory propagates a whole degree of freedom with second order equation in time for

any background. In this sense the projectable version is better behaved than the non-

projectable one. However, the preliminary analysis of the model in the regime when the

backreaction of the extra mode on the space-time geometry can be neglected suggests that

the model is still problematic since the additional field generically forms caustics and, again,

has very low strong coupling scale.

Let us comment on the possible ways in which the problems of the theory can be ad-

dressed. The comparison of projectable and non-projectable cases suggests that the only

way to make the extra mode well-behaved is to promote it to a full-fledged scalar. There

are two strategies to do so. One possibility is to relax the requirement of invariance under

reparameterizations of time and reduce the symmetry group of the theory down to (time-

dependent) spatial diffeomorphisms. As a result one obtains some version of the ghost

condensate model [10] which is known to be a consistent effective theory up to relatively

high scales. The problem with caustics can be also addressed in this framework [18]. In

the unitary gauge the theory would be described by a generalization of Hořava action con-

taining arbitrary functions of the lapse N . Needless to say, it is unclear if the appealing

UV properties of the Hořava proposal can be preserved within this approach. An argument

suggesting that it may be impossible is the break-down of the black hole thermodynamics

in the ghost condensate model [19, 20], and more generally, in theories with low-energy

violation of Lorentz invariance [21]. Indeed, the break-down of thermodynamics indicates
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violation of unitarity in the underlying theory, which makes construction of a renormaliz-

able and hence UV complete quantum theory having the ghost condensate as its low-energy

limit problematic.

Alternatively, one can promote the extra mode to a whole scalar without breaking

the invariance under foliation-preserving diffeomorphisms. To achieve this one has to add

to Hořava’s Lagrangian terms that are non-linear in N and respect the symmetry. An

example of such term is N−2(∇iN)2. In the Stückelberg picture around flat background

this corresponds to the addition of the term (∂iχ̇)2. In this case also the equation for the

Stückelberg field χ becomes of second order in time for any background. Still, the terms

added to the Lagrangian in the Stückelberg language are higher order in total number of

derivatives. It remains an open question if this feature does not lead to any pathologies. The

problems with the break-down of black hole thermodynamics would arise in this approach

as well: the field χ generically has different propagation velocity compared to the graviton

(helicity-2 excitation), thus violating the Lorentz invariance at low energies. It is unclear

at present if and how these problems can be resolved.

Finally, we mention another interesting outcome of our study. We observed that the

equation of motion for the Stückelberg field in Hořava gravity has a peculiar structure.

This equation is explicitly higher order in covariant derivatives. Consequently in a general

coordinate frame it is higher order in time. Generically, this would imply the presence of

additional ghost modes. However, this reasoning is incorrect in our case: there is a unique

preferred frame where the number of time derivatives in the equation is drastically reduced.

Solving the Cauchy problem in this frame requires less initial data than in a general frame.

The difference can be traced to the intrinsically non-relativistic nature of the theory which

implies that the two frames are physically inequivalent. Technically this manifests itself

in the fact that the boundary conditions at spatial infinity are not equivalent in the two

frames. We pointed out that the reduction of degrees of freedom in a preferred Cauchy

slicing is generic for a wide class of higher order covariant derivative operators. This opens

up the possibility to construct a new class of consistent higher derivative theories with

equations of motion based on these operators. We leave the investigation of these issues

for the future.
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A WKB expansion for the extra mode

In this appendix we construct the solution of eq. (5.2) using the WKB method. The

application of this method is legitimate in the case when the frequency ω and momentum
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p of the field χ are much larger than L−1, where L is the characteristic space-time scale of

the background. The leading-order approximation to the solution is obtained in the main

text and is given by the plain wave (5.3) with the frequency related to the momentum by

the dispersion relation (5.4). Our aim here is to obtain the order 1/(pL) corrections to

this solution.

We work locally in the vicinity of the point xo, which without loss of generality we

assume to coincide with the origin of the coordinate frame. By the 3-dimensional diffeo-

morphism we can make the spatial metric at this point flat, and its first derivatives vanish.

This implies that the spatial covariant derivatives in eq. (5.2) can be replaced by ordinary

ones in our approximation. We now use the following ansatz for the field χ:

χ ∝ exp
[

− iω(0)t + ipix
i − iδωt + i

a

2
t2 + ibitx

i +
i

2
cijx

ixj
]

. (A.1)

Here ω(0) is the leading-order frequency (5.4) evaluated at xo; δω is the frequency shift; and

a, bi, cij are the coefficients in the Taylor expansion of the WKB phase at xo. Note that if

we want the ansatz (A.1) to represent a small correction to the plain wave solution (5.3)

in the region t, xi ≪ L, we must require

δω ≪ ω(0) , a ∼ ω(0)L−1 , bi, cij ∼ pL−1 . (A.2)

One proceeds by evaluating the derivatives of χ appearing in eq. (5.2). Keeping the first

subleading corrections one obtains,

∂iχ̇ =
[

piω
(0) + piδω − piat − pibjx

j + ω(0)bit + ω(0)cijx
j + ibi

]

χ , (A.3)

∆2χ =
[

p4 + 4p2pibit + 4p2picijx
j − 4ipipjcij − 2ip2cii

]

χ . (A.4)

The last term in eq. (5.2) is already subleading because of the additional derivative of

the background. Thus, it is enough to evaluate the corresponding χ-derivative to the

leading order

∂i∆χ = −ipip
2χ . (A.5)

Finally, the inhomogeneity of the background is taken into account by expanding the

coefficients in (5.2) in a Taylor series,

∂iK̄ = ∂iK̄o + ∂i∂jK̄ox
j + ∂i

˙̄Kot , (A.6)

N̄ = N̄o + ∂iN̄ox
i + ˙̄Not , (A.7)

where the quantities with the subscript “o” are evaluated at the origin xo. We will omit

this index in what follows.

The next step is to substitute the expressions (A.3)–(A.7) into eq. (5.2) and require

the vanishing of the Taylor coefficients up to linear order in coordinates. This yields the

following system of equations,

−2pi∂iK̄a +
(

2ω(0)∂iK̄ + 4N̄p2pi

)

bi + 2ω(0)pi∂i
˙̄K + p4 ˙̄N = 0 , (A.8)

−2pi∂iK̄bj +
(

2ω(0)∂iK̄ + 4N̄p2pi

)

cij + 2ω(0)pi∂i∂jK̄ + p4∂jN̄ = 0 , (A.9)

pi∂iK̄δω + i∂iK̄bi − iN̄(2pipjcij + p2cii) − 3ip2pi∂iN̄ = 0 . (A.10)
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Note that within the assumptions (A.2) the first term in eq. (A.9) is much smaller than

the rest and we can neglect it. From this equation, the solution for cij reads:

cij = − ViVj

UkV k
,

where

Ui = 2ω(0)∂iK̄ + 4p2piN̄ ,

Vj = 2ω(0)pi∂i∂jK̄ + p4∂jN̄ .

It is easy to check that cij satisfies the estimate (A.2). We do not need to solve the

system (A.8)–(A.10) in the full generality: any special solution is sufficient for our pur-

poses. Thus we set bi = 0 and find a from (A.8). Finally, from eq. (A.10) we obtain the

frequency shift

δω =
i

pi∂iK̄

{

−2N̄(pjV
j)2

UkV k
− N̄p2VjV

j

UkV k
+ 3p2pj∂jN̄

}

.

This expression is purely imaginary. Analyzing the order of magnitude of the terms entering

into it one obtains the estimate (5.5) used in the main text.
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Lifshitz gravity, arXiv:0905.3423 [SPIRES].

[8] X. Gao, Y. Wang, R. Brandenberger and A. Riotto, Cosmological perturbations in
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